Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Nat Commun ; 12(1): 2571, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33958590

RESUMO

CRISPR-Cas systems provide adaptive immunity in bacteria and archaea, beginning with integration of foreign sequences into the host CRISPR genomic locus and followed by transcription and maturation of CRISPR RNAs (crRNAs). In some CRISPR systems, a reverse transcriptase (RT) fusion to the Cas1 integrase and Cas6 maturase creates a single protein that enables concerted sequence integration and crRNA production. To elucidate how the RT-integrase organizes distinct enzymatic activities, we present the cryo-EM structure of a Cas6-RT-Cas1-Cas2 CRISPR integrase complex. The structure reveals a heterohexamer in which the RT directly contacts the integrase and maturase domains, suggesting functional coordination between all three active sites. Together with biochemical experiments, our data support a model of sequential enzymatic activities that enable CRISPR sequence acquisition from RNA and DNA substrates. These findings highlight an expanded capacity of some CRISPR systems to acquire diverse sequences that direct CRISPR-mediated interference.


Assuntos
Proteínas Associadas a CRISPR/química , Sistemas CRISPR-Cas , Endonucleases/química , Integrases/química , Piscirickettsiaceae/química , DNA Polimerase Dirigida por RNA/química , Proteínas Associadas a CRISPR/metabolismo , Domínio Catalítico , Microscopia Crioeletrônica , Escherichia coli/metabolismo , Piscirickettsiaceae/enzimologia , Piscirickettsiaceae/metabolismo , Proteínas Recombinantes
2.
J Microbiol Biotechnol ; 30(8): 1261-1271, 2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32627749

RESUMO

Cytochrome cL (CytcL) is an essential protein in the process of methanol oxidation in methylotrophs. It receives an electron from the pyrroloquinoline quinone (PQQ) cofactor of methanol dehydrogenase (MDH) to produce formaldehyde. The direct electron transfer mechanism between CytcL and MDH remains unknown due to the lack of structural information. To help gain a better understanding of the mechanism, we determined the first crystal structure of heme c containing CytcL from the aquatic methylotrophic bacterium Methylophaga aminisulfidivorans MPT at 2.13 Å resolution. The crystal structure of Ma-CytcL revealed its unique features compared to those of the terrestrial homologues. Apart from Fe in heme, three additional metal ion binding sites for Na+ , Ca+ , and Fe2+ were found, wherein the ions mostly formed coordination bonds with the amino acid residues on the loop (G93-Y111) that interacts with heme. Therefore, these ions seemed to enhance the stability of heme insertion by increasing the loop's steadiness. The basic N-terminal end, together with helix α4 and loop (G126 to Y136), contributed positive charge to the region. In contrast, the acidic C-terminal end provided a negatively charged surface, yielding several electrostatic contact points with partner proteins for electron transfer. These exceptional features of Ma-CytcL, along with the structural information of MDH, led us to hypothesize the need for an adapter protein bridging MDH to CytcL within appropriate proximity for electron transfer. With this knowledge in mind, the methanol oxidation complex reconstitution in vitro could be utilized to produce metabolic intermediates at the industry level.


Assuntos
Grupo dos Citocromos c/química , Grupo dos Citocromos c/metabolismo , Piscirickettsiaceae/metabolismo , Oxirredutases do Álcool , Sequência de Aminoácidos , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Transporte de Elétrons , Heme/química , Modelos Moleculares , Oxirredução , Cofator PQQ/metabolismo , Conformação Proteica
3.
Biotechnol Bioeng ; 117(1): 39-48, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31544961

RESUMO

Carbonic anhydrase (CA) is a diffusion-limited enzyme that rapidly catalyzes the hydration of carbon dioxide (CO2 ). CA has been proposed as an eco-friendly yet powerful catalyst for CO2 capture and utilization. A bacterial whole-cell biocatalyst equipped with periplasmic CA provides an option for a cost-effective CO2 -capturing system. However, further utilization of the previously constructed periplasmic system has been limited by its relatively low activity and stability. Herein, we engineered three genetic components of the periplasmic system for the construction of a highly efficient whole-cell catalyst: a CA-coding gene, a signal sequence, and a ribosome-binding site (RBS). A stable and halotolerant CA (hmCA) from the marine bacterium Hydrogenovibrio marinus was employed to improve both the activity and stability of the system. The improved secretion and folding of hmCA and increased membrane permeability were achieved by translocation via the Sec-dependent pathway. The engineering of RBS strength further enhanced whole-cell activity by improving both the secretion and folding of hmCA. The newly engineered biocatalyst displayed 5.7-fold higher activity and 780-fold higher stability at 60°C compared with those of the previously constructed periplasmic system, providing new opportunities for applications in CO2 capture and utilization.


Assuntos
Dióxido de Carbono/metabolismo , Anidrases Carbônicas , Engenharia Celular/métodos , Piscirickettsiaceae , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação/genética , Anidrases Carbônicas/genética , Anidrases Carbônicas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Periplasma/genética , Periplasma/metabolismo , Piscirickettsiaceae/enzimologia , Piscirickettsiaceae/genética , Piscirickettsiaceae/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribossomos/metabolismo
4.
Geobiology ; 17(5): 564-576, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31180189

RESUMO

Microbial sulfur cycling in marine sediments often occurs in environments characterized by transient chemical gradients that affect both the availability of nutrients and the activity of microbes. High turnover rates of intermediate valence sulfur compounds and the intermittent availability of oxygen in these systems greatly impact the activity of sulfur-oxidizing micro-organisms in particular. In this study, the thiosulfate-oxidizing hydrothermal vent bacterium Thiomicrospira thermophila strain EPR85 was grown in continuous culture at a range of dissolved oxygen concentrations (0.04-1.9 mM) and high pressure (5-10 MPa) in medium buffered at pH 8. Thiosulfate oxidation under these conditions produced tetrathionate, sulfate, and elemental sulfur, in contrast to previous closed-system experiments at ambient pressure during which thiosulfate was quantitatively oxidized to sulfate. The maximum observed specific growth rate at 5 MPa pressure under unlimited O2 was 0.25 hr-1 . This is comparable to the µmax (0.28 hr-1 ) observed at low pH (<6) at ambient pressure when T. thermophila produces the same mix of sulfur species. The half-saturation constant for O2 ( KO2 ) estimated from this study was 0.2 mM (at a cell density of 105 cells/ml) and was robust at all pressures tested (0.4-10 MPa), consistent with piezotolerant behavior of this strain. The cell-specific KO2 was determined to be 1.5 pmol O2 /cell. The concentrations of products formed were correlated with oxygen availability, with tetrathionate production in excess of sulfate production at all pressure conditions tested. This study provides evidence for transient sulfur storage during times when substrate concentration exceeds cell-specific KO2 and subsequent consumption when oxygen dropped below that threshold. These results may be common among sulfur oxidizers in a variety of environments (e.g., deep marine sediments to photosynthetic microbial mats).


Assuntos
Sedimentos Geológicos/química , Oxigênio/análise , Piscirickettsiaceae/metabolismo , Enxofre/metabolismo , Tiossulfatos/metabolismo , Oxirredução , Pressão , Água do Mar/microbiologia
5.
Appl Environ Microbiol ; 85(3)2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30446552

RESUMO

Members of the genera Hydrogenovibrio, Thiomicrospira, and Thiomicrorhabdus fix carbon at hydrothermal vents, coastal sediments, hypersaline lakes, and other sulfidic habitats. The genome sequences of these ubiquitous and prolific chemolithoautotrophs suggest a surprising diversity of mechanisms for the uptake and fixation of dissolved inorganic carbon (DIC); these mechanisms are verified here. Carboxysomes are apparent in the transmission electron micrographs of most of these organisms but are lacking in Thiomicrorhabdus sp. strain Milos-T2 and Thiomicrorhabdus arctica, and the inability of Thiomicrorhabdus sp. strain Milos-T2 to grow under low-DIC conditions is consistent with the absence of carboxysome loci in its genome. For the remaining organisms, genes encoding potential DIC transporters from four evolutionarily distinct families (Tcr_0853 and Tcr_0854, Chr, SbtA, and SulP) are located downstream of carboxysome loci. Transporter genes collocated with carboxysome loci, as well as some homologs located elsewhere on the chromosomes, had elevated transcript levels under low-DIC conditions, as assayed by reverse transcription-quantitative PCR (qRT-PCR). DIC uptake was measureable via silicone oil centrifugation when a representative of each of the four types of transporter was expressed in Escherichia coli The expression of these genes in the carbonic anhydrase-deficient E. coli strain EDCM636 enabled it to grow under low-DIC conditions, a result consistent with DIC transport by these proteins. The results from this study expand the range of DIC transporters within the SbtA and SulP transporter families, verify DIC uptake by transporters encoded by Tcr_0853 and Tcr_0854 and their homologs, and introduce DIC as a potential substrate for transporters from the Chr family.IMPORTANCE Autotrophic organisms take up and fix DIC, introducing carbon into the biological portion of the global carbon cycle. The mechanisms for DIC uptake and fixation by autotrophic Bacteria and Archaea are likely to be diverse but have been well characterized only for "Cyanobacteria" Based on genome sequences, members of the genera Hydrogenovibrio, Thiomicrospira, and Thiomicrorhabdus have a variety of mechanisms for DIC uptake and fixation. We verified that most of these organisms are capable of growing under low-DIC conditions, when they upregulate carboxysome loci and transporter genes collocated with these loci on their chromosomes. When these genes, which fall into four evolutionarily independent families of transporters, are expressed in E. coli, DIC transport is detected. This expansion in known DIC transporters across four families, from organisms from a variety of environments, provides insight into the ecophysiology of autotrophs, as well as a toolkit for engineering microorganisms for carbon-neutral biochemistries of industrial importance.


Assuntos
Dióxido de Carbono/metabolismo , Piscirickettsiaceae/isolamento & purificação , Piscirickettsiaceae/metabolismo , Sulfetos/metabolismo , Processos Autotróficos , Ciclo do Carbono , Dióxido de Carbono/análise , Ecossistema , Fontes Hidrotermais/química , Fontes Hidrotermais/microbiologia , Filogenia , Piscirickettsiaceae/classificação , Piscirickettsiaceae/genética
6.
J Microbiol ; 56(4): 246-254, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29492864

RESUMO

The first crystal structure of a pyrroloquinoline quinone (PQQ)-dependent methanol dehydrogenase (MDH) from a marine methylotrophic bacterium, Methylophaga aminisulfidivorans MPT (MDH Mas ), was determined at 1.7 Å resolution. The active form of MDH Mas (or MDHI Mas ) is a heterotetrameric α2ß2, where each ß-subunit assembles on one side of each of the α-subunits, in a symmetrical fashion, so that two ß-subunits surround the two PQQ-binding pockets on the α-subunits. The active site consists of a PQQ molecule surrounded by a ß-propeller fold for each α-subunit. Interestingly, the PQQ molecules are coordinated by a Mg2+ ion, instead of the Ca2+ ion that is commonly found in the terrestrial MDHI, indicating the efficiency of osmotic balance regulation in the high salt environment. The overall interaction of the ß-subunits with the α-subunits appears tighter than that of terrestrial homologues, suggesting the efficient maintenance of MDHI Mas integrity in the sea water environment to provide a firm basis for complex formation with MxaJ Mas or Cyt cL. With the help of the features mentioned above, our research may enable the elucidation of the full molecular mechanism of methanol oxidation by taking advantage of marine bacterium-originated proteins in the methanol oxidizing system (mox), including MxaJ, as the attainment of these proteins from terrestrial bacteria for structural studies has not been successful.


Assuntos
Oxirredutases do Álcool/química , Oxirredutases do Álcool/isolamento & purificação , Piscirickettsiaceae/enzimologia , Domínio Catalítico , Cristalografia por Raios X , Magnésio/metabolismo , Modelos Moleculares , Oxirredução , Cofator PQQ/metabolismo , Piscirickettsiaceae/metabolismo
7.
Environ Microbiol ; 20(8): 2686-2708, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29521452

RESUMO

Chemolithoautotrophic bacteria from the genera Hydrogenovibrio, Thiomicrorhabdus and Thiomicrospira are common, sometimes dominant, isolates from sulfidic habitats including hydrothermal vents, soda and salt lakes and marine sediments. Their genome sequences confirm their membership in a deeply branching clade of the Gammaproteobacteria. Several adaptations to heterogeneous habitats are apparent. Their genomes include large numbers of genes for sensing and responding to their environment (EAL- and GGDEF-domain proteins and methyl-accepting chemotaxis proteins) despite their small sizes (2.1-3.1 Mbp). An array of sulfur-oxidizing complexes are encoded, likely to facilitate these organisms' use of multiple forms of reduced sulfur as electron donors. Hydrogenase genes are present in some taxa, including group 1d and 2b hydrogenases in Hydrogenovibrio marinus and H. thermophilus MA2-6, acquired via horizontal gene transfer. In addition to high-affinity cbb3 cytochrome c oxidase, some also encode cytochrome bd-type quinol oxidase or ba3 -type cytochrome c oxidase, which could facilitate growth under different oxygen tensions, or maintain redox balance. Carboxysome operons are present in most, with genes downstream encoding transporters from four evolutionarily distinct families, which may act with the carboxysomes to form CO2 concentrating mechanisms. These adaptations to habitat variability likely contribute to the cosmopolitan distribution of these organisms.


Assuntos
Crescimento Quimioautotrófico , Genoma Bacteriano , Piscirickettsiaceae/genética , Ecossistema , Hidrogenase/genética , Filogenia , Piscirickettsiaceae/classificação , Piscirickettsiaceae/enzimologia , Piscirickettsiaceae/metabolismo , Enxofre/metabolismo
8.
FEMS Microbiol Lett ; 364(14)2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28854673

RESUMO

The genome sequence of the obligate chemolithoautotroph Hydrogenovibrio crunogenus paradoxically predicts a complete oxidative citric acid cycle (CAC). This prediction was tested by multiple approaches including whole cell carbon assimilation to verify obligate autotrophy, phylogenetic analysis of CAC enzyme sequences and enzyme assays. Hydrogenovibrio crunogenus did not assimilate any of the organic compounds provided (acetate, succinate, glucose, yeast extract, tryptone). Enzyme activities confirmed that its CAC is mostly uncoupled from the NADH pool. 2-Oxoglutarate:ferredoxin oxidoreductase activity is absent, though pyruvate:ferredoxin oxidoreductase is present, indicating that sequence-based predictions of substrate for this oxidoreductase were incorrect, and that H. crunogenus may have an incomplete CAC. Though the H. crunogenus CAC genes encode uncommon enzymes, the taxonomic distribution of their top matches suggests that they were not horizontally acquired. Comparison of H. crunogenus CAC genes to those present in other 'Proteobacteria' reveals that H. crunogenus and other obligate autotrophs lack the functional redundancy for the steps of the CAC typical for facultative autotrophs and heterotrophs, providing another possible mechanism for obligate autotrophy.


Assuntos
Carbono/metabolismo , Ciclo do Ácido Cítrico , Fontes Hidrotermais/microbiologia , Piscirickettsiaceae/metabolismo , Crescimento Quimioautotrófico , Glucose/metabolismo , Oxirredução , Filogenia , Piscirickettsiaceae/classificação , Piscirickettsiaceae/genética , Ácido Pirúvico/metabolismo
9.
Nat Microbiol ; 2: 17093, 2017 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-28628098

RESUMO

Cycloclasticus bacteria are ubiquitous in oil-rich regions of the ocean and are known for their ability to degrade polycyclic aromatic hydrocarbons (PAHs). In this study, we describe Cycloclasticus that have established a symbiosis with Bathymodiolus heckerae mussels and poecilosclerid sponges from asphalt-rich, deep-sea oil seeps at Campeche Knolls in the southern Gulf of Mexico. Genomic and transcriptomic analyses revealed that, in contrast to all previously known Cycloclasticus, the symbiotic Cycloclasticus appears to lack the genes needed for PAH degradation. Instead, these symbionts use propane and other short-chain alkanes such as ethane and butane as carbon and energy sources, thus expanding the limited range of substrates known to power chemosynthetic symbioses. Analyses of short-chain alkanes in the environment of the Campeche Knolls symbioses revealed that these are present at high concentrations (in the µM to mM range). Comparative genomic analyses revealed high similarities between the genes used by the symbiotic Cycloclasticus to degrade short-chain alkanes and those of free-living Cycloclasticus that bloomed during the Deepwater Horizon oil spill. Our results indicate that the metabolic versatility of bacteria within the Cycloclasticus clade is higher than previously assumed, and highlight the expanded role of these keystone species in the degradation of marine hydrocarbons.


Assuntos
Alcanos/metabolismo , Bivalves/microbiologia , Piscirickettsiaceae/metabolismo , Poríferos/microbiologia , Simbiose , Animais , Carbono/metabolismo , Metabolismo Energético , Perfilação da Expressão Gênica , Genômica , Golfo do México , Piscirickettsiaceae/genética , Piscirickettsiaceae/fisiologia
10.
Environ Microbiol ; 19(7): 2843-2861, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28585283

RESUMO

Phytoplankton have been shown to harbour a diversity of hydrocarbonoclastic bacteria (HCB), yet it is not understood how these phytoplankton-associated HCB would respond in the event of an oil spill at sea. Here, we assess the diversity and dynamics of the bacterial community associated with a natural population of marine phytoplankton under oil spill-simulated conditions, and compare it to that of the free-living (non phytoplankton-associated) bacterial community. While the crude oil severely impacted the phytoplankton population and was likely conducive to marine oil snow formation, analysis of the MiSeq-derived 16S rRNA data revealed dramatic and differential shifts in the oil-amended communities that included blooms of recognized HCB (e.g., Thalassospira, Cycloclasticus), including putative novel phyla, as well as other groups with previously unqualified oil-degrading potential (Olleya, Winogradskyella, and members of the inconspicuous BD7-3 phylum). Notably, the oil biodegradation potential of the phytoplankton-associated community exceeded that of the free-living community, and it showed a preference to degrade substituted and non-substituted polycyclic aromatic hydrocarbons. Our study provides evidence of compartmentalization of hydrocarbon-degrading capacity in the marine water column, wherein HCB associated with phytoplankton are better tuned to degrading crude oil hydrocarbons than that by the community of planktonic free-living bacteria.


Assuntos
Biodegradação Ambiental , Flavobacteriaceae/metabolismo , Petróleo/metabolismo , Fitoplâncton/microbiologia , Piscirickettsiaceae/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Rhodospirillaceae/metabolismo , Flavobacteriaceae/genética , Poluição por Petróleo , Piscirickettsiaceae/genética , RNA Ribossômico 16S/genética , Rhodospirillaceae/genética
11.
J Bacteriol ; 199(7)2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28115547

RESUMO

Many autotrophic microorganisms are likely to adapt to scarcity in dissolved inorganic carbon (DIC; CO2 + HCO3- + CO32-) with CO2 concentrating mechanisms (CCM) that actively transport DIC across the cell membrane to facilitate carbon fixation. Surprisingly, DIC transport has been well studied among cyanobacteria and microalgae only. The deep-sea vent gammaproteobacterial chemolithoautotroph Thiomicrospira crunogena has a low-DIC inducible CCM, though the mechanism for uptake is unclear, as homologs to cyanobacterial transporters are absent. To identify the components of this CCM, proteomes of T. crunogena cultivated under low- and high-DIC conditions were compared. Fourteen proteins, including those comprising carboxysomes, were at least 4-fold more abundant under low-DIC conditions. One of these proteins was encoded by Tcr_0854; strains carrying mutated copies of this gene, as well as the adjacent Tcr_0853, required elevated DIC for growth. Strains carrying mutated copies of Tcr_0853 and Tcr_0854 overexpressed carboxysomes and had diminished ability to accumulate intracellular DIC. Based on reverse transcription (RT)-PCR, Tcr_0853 and Tcr_0854 were cotranscribed and upregulated under low-DIC conditions. The Tcr_0853-encoded protein was predicted to have 13 transmembrane helices. Given the mutant phenotypes described above, Tcr_0853 and Tcr_0854 may encode a two-subunit DIC transporter that belongs to a previously undescribed transporter family, though it is widespread among autotrophs from multiple phyla.IMPORTANCE DIC uptake and fixation by autotrophs are the primary input of inorganic carbon into the biosphere. The mechanism for dissolved inorganic carbon uptake has been characterized only for cyanobacteria despite the importance of DIC uptake by autotrophic microorganisms from many phyla among the Bacteria and Archaea In this work, proteins necessary for dissolved inorganic carbon utilization in the deep-sea vent chemolithoautotroph T. crunogena were identified, and two of these may be able to form a novel transporter. Homologs of these proteins are present in 14 phyla in Bacteria and also in one phylum of Archaea, the Euryarchaeota Many organisms carrying these homologs are autotrophs, suggesting a role in facilitating dissolved inorganic carbon uptake and fixation well beyond the genus Thiomicrospira.


Assuntos
Dióxido de Carbono/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Fontes Hidrotermais/microbiologia , Piscirickettsiaceae/metabolismo , Carbono/metabolismo , Mutação , Filogenia , Piscirickettsiaceae/genética , Proteoma
12.
Environ Microbiol ; 19(3): 1322-1337, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28078797

RESUMO

Sulfide mineral precipitation occurs at mid-ocean ridge (MOR) spreading centers, both in the form of plume particles and seafloor massive sulfide structures. A common constituent of MOR is the iron-bearing sulfide mineral pyrrhotite, which was chosen as a substrate for in-situ incubation studies in shallow waters of Catalina Island, CA to investigate the colonization of iron-oxidizing bacteria. Microbial community datasets were obtained from in-situ incubated pyrrhotite, allowing for direct comparison to microbial communities of iron-sulfides from active and inactive chimneys in deep-sea environments. Unclassified Gammaproteobacteria and Alphaproteobacteria (Magnetovibrio) largely dominated the bacterial community on pyrrhotite samples incubated in the water column while samples incubated at the surface sediment showed more even dominance by Deltaproteobacteria (Desulfobulbus), Gammaproteobacteria (Piscirickettsiaceae), Alphaproteobacteria (Rhodobacteraceae), and Bacteroidetes (Flavobacteriia). Cultivations that originated from pyrrhotite samples resulted in the enrichment of both, sheath-forming and stalk-forming Zetaproteobacteria. Additionally, a putative novel species of Thiomicrospira was isolated and shown to grow autotrophically with iron, indicating a new biogeochemical role for this ubiquitous microorganism.


Assuntos
Ferro/metabolismo , Piscirickettsiaceae/metabolismo , Enxofre/metabolismo , Crescimento Quimioautotrófico/genética , Ilhas , Minerais/metabolismo , Dados de Sequência Molecular , Oxirredução , Filogenia , Piscirickettsiaceae/classificação , Piscirickettsiaceae/genética , Piscirickettsiaceae/isolamento & purificação , RNA Ribossômico 16S , Sulfetos/metabolismo
13.
Environ Microbiol Rep ; 8(4): 508-19, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27345842

RESUMO

Marine prokaryotes have evolved a broad repertoire of defence systems to protect their genomes from lateral gene transfer including innate or acquired immune systems and infection-induced programmed cell suicide and dormancy. Here we report on the analysis of multiple defence systems present in the genome of the strain Cycloclasticus sp. 78-ME isolated from petroleum deposits of the tanker 'Amoco Milford Haven'. Cycloclasticus are ubiquitous bacteria globally important in polyaromatic hydrocarbons degradation in marine environments. Two 'defence islands' were identified in 78-ME genome: the first harbouring CRISPR-Cas with toxin-antitoxin system, while the second was composed by an array of genes for toxin-antitoxin and restriction-modification proteins. Among all identified spacers of CRISPR-Cas system only seven spacers match sequences of phages and plasmids. Furthermore, a conjugative plasmid p7ME01, which belongs to a new IncP-1θ ancestral archetype without any accessory mobile elements was found in 78-ME. Our results provide the context to the co-occurrence of diverse defence mechanisms in the genome of Cycloclasticus sp. 78-ME, which protect the genome of this highly specialized PAH-degrader. This study contributes to the further understanding of complex networks established in petroleum-based microbial communities.


Assuntos
Sistemas CRISPR-Cas , Enzimas de Restrição-Modificação do DNA , Hidrocarbonetos/metabolismo , Piscirickettsiaceae/genética , Piscirickettsiaceae/metabolismo , Plasmídeos/análise , Plasmídeos/classificação , Biotransformação , Genes Bacterianos , Ilhas Genômicas , Água do Mar/microbiologia
14.
Arch Microbiol ; 198(2): 149-59, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26581415

RESUMO

The gammaproteobacterium Thiomicrospira crunogena XCL-2 is an aerobic sulfur-oxidizing hydrothermal vent chemolithoautotroph that has a CO2 concentrating mechanism (CCM), which generates intracellular dissolved inorganic carbon (DIC) concentrations much higher than extracellular, thereby providing substrate for carbon fixation at sufficient rate. This CCM presumably requires at least one active DIC transporter to generate the elevated intracellular concentrations of DIC measured in this organism. In this study, the half-saturation constant (K CO2) for purified carboxysomal RubisCO was measured (276 ± 18 µM) which was much greater than the K CO2 of whole cells (1.03 µM), highlighting the degree to which the CCM facilitates CO2 fixation under low CO2 conditions. To clarify the bioenergetics powering active DIC uptake, cells were incubated in the presence of inhibitors targeting ATP synthesis (DCCD) or proton potential (CCCP). Incubations with each of these inhibitors resulted in diminished intracellular ATP, DIC, and fixed carbon, despite an absence of an inhibitory effect on proton potential in the DCCD-incubated cells. Electron transport complexes NADH dehydrogenase and the bc 1 complex were found to be insensitive to DCCD, suggesting that ATP synthase was the primary target of DCCD. Given the correlation of DIC uptake to the intracellular ATP concentration, the ABC transporter genes were targeted by qRT-PCR, but were not upregulated under low-DIC conditions. As the T. crunogena genome does not include orthologs of any genes encoding known DIC uptake systems, these data suggest that a novel, yet to be identified, ATP- and proton potential-dependent DIC transporter is active in this bacterium. This transporter serves to facilitate growth by T. crunogena and other Thiomicrospiras in the many habitats where they are found.


Assuntos
Ciclo do Carbono/fisiologia , Carbono/metabolismo , Piscirickettsiaceae/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Trifosfato de Adenosina/metabolismo , Regulação Bacteriana da Expressão Gênica , Piscirickettsiaceae/enzimologia , Piscirickettsiaceae/genética
15.
Mar Genomics ; 25: 11-13, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26508673

RESUMO

Cycloclasticus sp. 78-ME isolated from petroleum deposits of the sunken tanker "Amoco Milford Haven" (Gulf of Genoa, Ligurian Sea, Italy) could effectively degrade polycyclic aromatic hydrocarbons of up to five condensed rings. The genome of 78-ME was sequenced and analysed to gain insights into its remarkable degrading capacities. It comprises two circular replicons, the 2,613,078 bp chromosome and the plasmid of 42,347 bp, with 41.84% and 53.28% of the G + C content respectively. A total of 2585 protein-coding genes were obtained, and three large operons with more than fifteen enzymes belonging to four different classes of ring-cleavage dioxygenases were found.


Assuntos
Genoma Bacteriano , Piscirickettsiaceae/genética , Bifenilos Policlorados/metabolismo , Biodegradação Ambiental , Regulação Bacteriana da Expressão Gênica , Mar Mediterrâneo , Petróleo/análise , Petróleo/metabolismo , Piscirickettsiaceae/metabolismo , Navios
16.
Environ Microbiol Rep ; 8(1): 53-7, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26511790

RESUMO

The first Thiomicrospira species was isolated in 1972 and was described as a sulfur-oxidizing chemolithoautotroph. Since then, several other Thiomicrospira species have been recovered from around the globe and have been classified as common sulfur oxidizers. In the past, attempts to demonstrate hydrogen consumption of a Thiomicrospira species have failed. However, recently, we showed that some Thiomicrospira strains can indeed consume hydrogen. Here, we discuss why Thiomicrospira species have likely resisted efforts to consume hydrogen under the offered conditions. It appears that their hydrogen consumption ability is closely tied to the concentration of nickel in the medium. Investigated carbonate and thiosulfate concentrations did not appear to be critical for hydrogen utilization under the tested conditions.


Assuntos
Hidrogênio/metabolismo , Níquel/metabolismo , Piscirickettsiaceae/metabolismo , Carbonatos/metabolismo , Meios de Cultura/química , Tiossulfatos/metabolismo
17.
Environ Microbiol ; 17(10): 4007-18, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26033676

RESUMO

A variety of culture-independent techniques have been developed that can be used in conjunction with culture-dependent physiological and metabolic studies of key microbial organisms in order to better understand how the activity of natural populations influences and regulates all major biogeochemical cycles. In this study, we combined deoxyribonucleic acid-stable isotope probing (DNA-SIP) with metagenomics and metaproteomics to characterize an uncultivated marine methylotroph that actively incorporated carbon from (13) C-labeled methanol into biomass. By metagenomic sequencing of the heavy DNA, we retrieved virtually the whole genome of this bacterium and determined its metabolic potential. Through protein-stable isotope probing, the RuMP cycle was established as the main carbon assimilation pathway, and the classical methanol dehydrogenase-encoding gene mxaF, as well as three out of four identified xoxF homologues were found to be expressed. This proof-of-concept study is the first in which the culture-independent techniques of DNA-SIP and protein-SIP have been used to characterize the metabolism of a naturally occurring Methylophaga-like bacterium in the marine environment (i.e. Methylophaga thiooxydans L4) and thus provides a powerful approach to access the genome and proteome of uncultivated microbes involved in key processes in the environment.


Assuntos
Redes e Vias Metabólicas/genética , Metanol/metabolismo , Piscirickettsiaceae/metabolismo , Água do Mar/microbiologia , Oxirredutases do Álcool/genética , Sequência de Bases , Biomassa , Carbono/metabolismo , DNA Bacteriano/genética , Genoma Bacteriano/genética , Marcação por Isótopo , Metagenômica/métodos , Dados de Sequência Molecular , Piscirickettsiaceae/genética , Proteoma/genética , Proteômica/métodos , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
18.
ISME J ; 9(3): 696-707, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25226028

RESUMO

Thiomicrospira species are ubiquitously found in various marine environments and appear particularly common in hydrothermal vent systems. Members of this lineage are commonly classified as sulfur-oxidizing chemolithoautotrophs. Although sequencing of Thiomicrospira crunogena's genome has revealed genes that encode enzymes for hydrogen uptake activity and for hydrogenase maturation and assembly, hydrogen uptake ability has so far not been reported for any Thiomicrospira species. We isolated a Thiomicrospira species (SP-41) from a deep sea hydrothermal vent and demonstrated that it can oxidize hydrogen. We show in vivo hydrogen consumption, hydrogen uptake activity in partially purified protein extracts and transcript abundance of hydrogenases during different growth stages. The ability of this strain to oxidize hydrogen opens up new perspectives with respect to the physiology of Thiomicrospira species that have been detected in hydrothermal vents and that have so far been exclusively associated with sulfur oxidation.


Assuntos
Hidrogênio/metabolismo , Fontes Hidrotermais/microbiologia , Piscirickettsiaceae/metabolismo , Hidrogenase/metabolismo , Oxirredução , Filogenia , Piscirickettsiaceae/classificação , Piscirickettsiaceae/crescimento & desenvolvimento , Piscirickettsiaceae/isolamento & purificação , Água do Mar/microbiologia , Enxofre/metabolismo
19.
ISME J ; 8(12): 2543-5, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24865772

RESUMO

The role of methylotrophic bacteria in the fate of the oil and gas released into the Gulf of Mexico during the Deepwater Horizon oil spill has been controversial, particularly in relation to whether organisms such as Methylophaga had contributed to the consumption of methane. Whereas methanotrophy remains unqualified in these organisms, recent work by our group using DNA-based stable-isotope probing coupled with cultivation-based methods has uncovered hydrocarbon-degrading Methylophaga. Recent findings have also shown that methylotrophs, including Methylophaga, were in a heightened state of metabolic activity within oil plume waters during the active phase of the spill. Taken collectively, these findings suggest that members of this group may have participated in the degradation of high-molecular-weight hydrocarbons in plume waters. The discovery of hydrocarbon-degrading Methylophaga also highlights the importance of considering these organisms in playing a role to the fate of oil hydrocarbons at oil-impacted sites.


Assuntos
Hidrocarbonetos/metabolismo , Poluição por Petróleo , Piscirickettsiaceae/metabolismo , Golfo do México , Metano/metabolismo , Piscirickettsiaceae/classificação , Água do Mar/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA